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FINAL REPORT (FA9550-07-1-0098) PI: D. Thirumalai, University of Maryland 

The funding was used to develop computational methods to understand the folding of 
proteins and functions of molecular motors. We made substantial progress in both fronts. 
The highlights of the grant are: (1) Development of theoretical and computational 
methods to understand allosteric transitions in enzymes and motors. (2) Application of 
these ideas to understand, at the molecular level, transitions from one state to another. 
Specific applications include transitions in DHFR, myosin, and bacterial chaperonin 
GroEL. (3) We have also proposed ways of understanding and interpreting experiments 
on riboswitches, genetic sensors. A few highlights follow. 

Allosteric Wiring Diagram: We developed a direct sequence-based method for 
obtaining allosteric wiring diagram in enzymes and molecular machines. The function 
and dynamics of machines is encoded in the structure. Upon function communication 
across the residues that are dispersed throughout the structure occurs. The key question is 
what is the signaling pathway that controls this communication? In other words from 
structures can one predict the allosteric wiring diagram (AWD)? More importantly, are 
there evolutionary imprints that preserve the nature of the wiring diagram? 

To answer this important question we developed both a sequence-based method, which 
exploits evolutionary signals, to predict the residues that communicate the signals for 
functional purposes. We applied the computational method to DHFR (see the two distinct 
structures in the CS and OS states in the diagram below). The sequence-based method 
showed, surprisingly, that a very sparse network of residues that are interspersed 
throughout the structure, determines AWD. To further test their role we developed a 
dynamical simulation model that monitors the kinetics of the CS to OS transitions. 
Remarkably, the sliding of residues along the helices (purple in the diagrams on the right) 
that appear stationary from crystal structures plays a crucial in the CS to OS transition. 
DHFR controls cell growth and has been a cancer target and has been studied 
extensively. Nevertheless, this work shows for the first time a detailed '•movie'' of 
motions of sparse network of residues in the AWD that control dynamics. 



Riboswtich Landscape: Riboswitches found in the untranslated regions of mRNAs of 
both prokaryotes and eukaryotes, are RNA elements that regulate gene expression by 
sensing and binding target cellular metabolites. They contain a conserved metabolite- 
binding aptamer domain and a downstream expression platform. In bacteria, ligand 
binding to the aptamer domain usually results in a conformational change,2 which alters 
the folding pattern of the expression platform and controls transcription termination or 
translation initiation. Among the simplest riboswitches, the purine (guanine and adenine) 
riboswitches display remarkable ligand selectivity and carry out markedly different 
functions despite the structural similarity of their aptamers. For the pbuE adenine (A) 
riboswitch, the ligand binding activates the gene expression when an antiterminator is 
formed.5 In the absence of adenine, part of the aptamer region is involved in the 
formation of a terminator stem with the expression platform, which results in 
transcription termination. The add A-riboswitch, on the other hand, activates the gene 
expression by forming translational activator upon ligand binding, while, in the absence 
of adenine, the riboswitch adopts the structure with a translational repressor stem in the 
downstream region. Thus, it is important to quantitatively map the folding landscape of 
aptamers to understand the differences in the function of structurally similar riboswitches. 

We developed a method for the force(/)-triggered unfolding and refolding of the A- 
riboswitch aptamer theoretically using the self-organized polymer model8 with the 
Langevin dynamics in the overdamped limit. The native structure, taken from the crystal 
structure of the aptamer domain of the Vibrio Vulnificus add A-riboswitch has 63 
nucleotides. Our results yielded quantitative support for experiments, and provided for 
the first time the entire landscape of riboswitches that could be compared with 
experiments. The result is crucial for transcription of the complete riboswitch. In vivo, 
without metabolite binding, the riboswitch favors the formation of the downstream 
terminator hairpin, which disrupts the aptamer structure. Ligand binding thus stabilizes 
the aptamer structure during transcription and prevents the formation of the terminator 
stem before transcription is completed {pbuE riboswitches) or the formation of translation 
repressor stem before translation is initiated {add riboswitches). Further study of 
cotranscriptional folding of the complete riboswitch including the downstream expression 
platform is necessary to fully understand the mechanism of gene regulation by 
riboswitches. 

Conformational transitions in motors:  We had developed and tested a direct structure- 
based method for obtaining allosteric wiring diagram (AWD) in molecular. AWD is a 
network of residues in biological machines, which regulate mechanical movements in 
response to binding of ligands such as ATP. As such they carry the signals for such 
domain movements, which are needed for function. In order to link this to dynamics we 
developed a computational technique that can simulate transitions between any two 
states, say one with ligand bound (apo state)and the other with ligand unbound (holo 
state). The function and dynamics of machines is encoded in the structure, and linked to 
the dynamics. The methodology is very general and can be applied to any system for 
which large scale motions are sought. We have applied this to a key step in myosin V 
transition. 



Myosins are a family of motors that move along actin filaments to transport cargo in 
cells. To elucidate the structural changes that take place in the rigor (R) to post-rigor (PR) 
transition in MyosinV. which result in the detachment from actin, we used a combination 
of an elastic network model and Brownian dynamics using the SOP energy function. We 
showed that the allostery wiring diagram is made up of a network of residues that connect 
the ATP and actin binding regions.Several of the residues in the AWD have been shown 
to be important in the allosteric transitions associated with myoV. 

Remarkably, the structural elements associated with the AWD are found to be 
responsible for driving the kinetics of the R -> PR transition. The dynamical simulations 
show that the exponential kinetics associated with the global dynamics masks the hidden 
complexity of the movements associated with the key structural elements in the R -> PR 
transition. The hierarchy of time scales that drive the global conformational change of the 
motor domains begins with the movement of switch I towards the P-loop (Fig.  1). 
The two structural elements move towards their post-rigor positions on a timescale of 
which is a factor of two less than that associated with the decay of the global motion. The 
coordinated movement of P-loop and switch I triggers a concerted rearrangement of the 
rest of the structure, in particular the rotation of HI 8 and the entire U50 domain with 
respect to the L50 domain. It is the relative shift of U50. carried by HI8, and L50 that 
opens the cleft between the two domains and causes the myosin motor domain to 
disassociate from actin. Thus, the entire domain has to move in a hierarchical manner to 
affect the global transition, and hence facilitate the movement of the motor on actin. Two 
papers are currently being prepared for publication. 




